Respuesta :
Answer:
e- 7.25 x 10³.
Explanation:
∵ ΔG = -RTlnK,
where, ΔG is the free energy change.
R is the general gas constant (R = 8.324 J/mol.K).
K is the equilibrium constant of the reaction.
- For the reaction: N₂(g) + 3H₂(g) → 2NH₃(g),
K = (PNH₃)²/(PN₂)(PH₂)³ = (0.65)²/(1.9)(1.6)³ = 5.43 x 10⁻².
∵ ΔG = -RTlnK.
∴ ΔG = -(8.314 J/mol.K)(298 K) ln(5.43 x 10⁻²) = 7.218 x 10³ J/mol.
The change in free energy of the system under the given conditions is -40.5 KJ/mol.
N2 (g) + 3H2 (g) → 2NH3 (g)
We have to use the relation; ΔG = ΔG⁰ + RT ln Q
ΔG = Free energy change under the given conditions
ΔG⁰ = standard free energy change
R = gas constant
Q = reaction quotient
We can obtain the reaction quotient from;
Q = [NH3]^2/[N2] [H2]^3
Q = [0.65]^2/[1.9] [1.6]^3
Q = 0.4225/7.7824
Q= 0.0543
Substituting the values;
ΔG⁰ = -33.3 KJ/mol
R = 8.314 JK-1mol-1
T = 298 K
Q = 0.0543
ΔG = -33.3 KJ/mol + (8.314 JK-1mol-1 × 298 K) ln (0.0543)
ΔG = -33.3 KJ/mol + (-7.2 KJ/mol)
ΔG = -40.5 KJ/mol
Learn more: https://brainly.com/question/13155407