The diagram shows a triangle PQR.
XYZR is a parallelogram where
X is the midpoint of RP,
Y is the midpoint of PQ,
and Z is the midpoint of QR.

Prove that triangle PYX is congruent
to triangle YQZ.

Total marks: 4

The diagram shows a triangle PQR XYZR is a parallelogram where X is the midpoint of RP Y is the midpoint of PQ and Z is the midpoint of QR Prove that triangle P class=

Respuesta :

Answer:

Triangle ΔPYX is congruent to triangle ΔYQZ by Angle-Angle-Side condition of congruency

Step-by-step explanation:

The given

Statement                [tex]{}[/tex]                              Reason

PQR is a triangle               [tex]{}[/tex]                    Given

XYZR is a parallelogram           [tex]{}[/tex]            Given

X is the midpoint of RP           [tex]{}[/tex]              Given

Y  is the midpoint of PQ          [tex]{}[/tex]              Given

Z  is the midpoint of QR          [tex]{}[/tex]              Given

Therefore;

QY = YP, Definition of midpoint

XY is parallel to QR, and YZ  is parallel to  RP Midpoint theorem

Therefore, ∠PYX ≅ ∠PQR and ∠QZY ≅ ∠YXP Corresponding angles of parallel lines

From which we have;

Triangle ΔPYX is congruent to triangle ΔYQZ by Angle-Angle-Side condition of congruency.

ACCESS MORE
EDU ACCESS
Universidad de Mexico