Answer:
The beam of the light is moving along the shoreline at the rate of [tex]\mathbf{ 160 \ \pi \ mi/min}[/tex]
Step-by-step explanation:
From the given information: Let say x is the distance between the lighthouse and the shoreline. Then, the tangent of trigonometry can be written as:
[tex]tan (\theta )=\dfrac{x}{4}[/tex]
In respect to time, the expression can be derived as:
[tex]sec^2 (\theta) \dfrac{d \theta}{dt} = \dfrac{1 }{4}\dfrac{dx}{dt}[/tex]
[tex]\dfrac{dx}{dt}=\dfrac{4}{cos ^2 (\theta) }\dfrac{d \theta}{dt}[/tex]
To estimate the value of [tex]\dfrac{dx}{dt}[/tex], we need to know cos²(θ) and D
where;
D = [tex]\sqrt{4^2+4^2}= \sqrt{32}\ mi[/tex]
[tex]cos (\theta) = \dfrac{4}{D}[/tex]
[tex]cos (\theta) = \dfrac{4}{\sqrt{32}}[/tex]
[tex]cos (\theta) = \dfrac{4}{\sqrt{16 \times 2}}[/tex]
[tex]cos (\theta) = \dfrac{4}{4 \sqrt{\ 2}}[/tex]
[tex]cos (\theta) = \dfrac{1}{ \sqrt{\ 2}}[/tex]
[tex]cos ^2 (\theta)= \dfrac{1}{2}[/tex]
Finally, we substitute the value of [tex]cos^2(\theta)[/tex] and [tex]\dfrac{d \theta}{dt}[/tex] in the expression derived earlier.
i.e.
[tex]\dfrac{dx}{dt} = \dfrac{4}{\dfrac{1}{2}}\times 10 \ rev/min[/tex]
where;
10 rev/min = (10 × 2π) rad/min = 20π rad/min
Then:
[tex]\dfrac{dx}{dt} = \dfrac{4}{\dfrac{1}{2}}\times 20 \ \pi[/tex]
[tex]\mathbf{\dfrac{dx}{dt} = 160 \ \pi \ mi/min}[/tex]