second question: How many seconds after the first snowball
should you throw the second so that they
arrive on target at the same time?
Answer in units of s.
Answer:
Part 1: 28°
Part 2: 1.367
Explanation:
Part 1:
Given: 62°
Simple
θ = 90°- 62°
θ = 28°
Part 2:
Y-direction
Δy[tex]=v_{yo} t+\frac{1}{2} a_{y} t^{2}[/tex]
[tex]0=[16.2sin(62)]t_{1}+1/2(-9.8)t_{1}^{2} \\[/tex]
[tex]t_{1} =\frac{2[16.2sin(62)]}{9.8}[/tex]
[tex]t_{1}=2.91913s[/tex]
[tex]0=[16.2sin(28)]t_{2}+1/2(-9.8)t_{2}^{2}[/tex]
[tex]t_{2} =\frac{2[16.2sin(28)]}{9.8}[/tex]
[tex]t_{2}=1.55213s[/tex]
Δt[tex]=t_{1}-t_{2}[/tex]
Δt[tex]=2.91913-1.55213[/tex]
Δt= 1.367s
Hope it helps :)