solve for x,y, and z.

The given triangle is isosceles, so the two remaining angles in the triangle both have measure xº. The interior angles of any triangle sum to 180º, so that
58º + xº + xº = 180º
58 + 2x = 180
2x = 122
x = 61
Angles y and z are supplementary to angle x, so that
xº + yº = 180º
and
xº + zº = 180º
and consequently, y = z. In particular, we get
y = 180 - 61
y = 119
and so
z = 119