Answer:
The waiting time is "17.778 hours".
Explanation:
The given values are:
Number of supercomputers with CPUD,
m = 1
Interarrival time's standard deviation,
sd(a) = 3 hours
Processing time,
p = 4 hours
Job's Interarrival time,
a = 5 hours
Processing time's standard deviation,
sd(p) = 4.8 hours
Now,
The coefficient of variation of interarrival time will be:
⇒ [tex]CVa=\frac{sd(a)}{a}[/tex]
[tex]=\frac{3}{5}[/tex]
[tex]=0.6[/tex]
The coefficient of variation of interarrival time will be:
⇒ [tex]CVp=\frac{sd(p)}{p}[/tex]
[tex]=\frac{4.8}{4}[/tex]
[tex]=1.2[/tex]
The utilization will be:
⇒ [tex]u=\frac{p}{ma}[/tex]
[tex]=\frac{4}{1\times 5}[/tex]
[tex]=0.8[/tex]
The expected time of waiting will be:
⇒ [tex]Tq=\frac{p}{m}\times \frac{u^{sqrt[2(m+1)] -1}}{(1-u)}\times \frac{CVa^2+CVp^2}{2}[/tex]
[tex]=\frac{4}{1}\times \frac{(0.8^{sqrt(2(1+1))} - 1)}{(1-0.8)}\times \frac{0.6^2+1.2^2}{2}[/tex]
[tex]=4\times \frac{0.8}{0.2}\times 0.9[/tex]
[tex]=17.778 \ hours[/tex]