By the chain rule,
[tex]\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{\mathrm dy}{\mathrm dt}\dfrac{\mathrm dt}{\mathrm dx}\implies\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{\frac{\mathrm dy}{\mathrm dt}}{\frac{\mathrm dx}{\mathrm dt}}[/tex]
It looks like we're given
[tex]\begin{cases}x=a\sin(2t)(1+\cos(2t))\\y=b\cos(2t)(1-\cos(2t))\end{cases}[/tex]
where a and b are presumably constant.
Recall that
[tex]\cos^2t=\dfrac{1+\cos(2t)}2[/tex]
[tex]\sin^2t=\dfrac{1-\cos(2t)}2[/tex]
so that
[tex]\begin{cases}x=2a\sin(2t)\cos^2t\\y=2b\cos(2t)\sin^2t\end{cases}[/tex]
Then we have
[tex]\dfrac{\mathrm dx}{\mathrm dt}=4a\cos(2t)\cos^2t-4a\sin(2t)\cos t\sin t[/tex]
[tex]\dfrac{\mathrm dy}{\mathrm dt}=-4b\sin(2t)\sin^2t+4b\cos(2t)\sin t\cos t[/tex]
[tex]\implies\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{4b\cos(2t)\sin t\cos t-4b\sin(2t)\sin^2}{4a\cos(2t)\cos^2t-4a\sin(2t)\cos t\sin t}[/tex]
[tex]\implies\boxed{\dfrac{\mathrm dy}{\mathrm dx}=\dfrac ba\tan t}[/tex]
where the last reduction follows from dividing through everything by [tex]\cos(2t)\cos^2t[/tex] and simplifying.
I'm not sure at which point you're supposed to evaluate the derivative (22/7*4, as in 88/7? or something else?), so I'll leave that to you.