Answer:
The answer is "[tex]\bold{0.525\ \ atm^{-1}}[/tex]"
Explanation:
Given equation:
[tex]2SO_2(g) + O_2(g) \leftrightharpoons 2SO_3(g)[/tex]
Given value:
[tex]\Delta rH =-198.2 \ \ \frac{KJ}{mol}[/tex]
[tex]Kp=1100 \ K[/tex]
[tex]\Delta x = 2-(2+1)\\\\[/tex]
[tex]= 2-(2+1)\\\\= 2-(3)\\\\= -1[/tex]
[tex]\left\begin{array}{cccc}I\ (atm)&1&0.5&0\\C\ (atm)&2x&-x&2x\\E\ (atm) &1-2x&0.5-x&2x\end{array}\right[/tex]
calculating the total pressure on equilibrium= [tex](1-2x)+(0.5-x)+2x \ atm\\\\[/tex]
[tex]= 1-2x+0.5-x+2x\\\\= 1+0.5-x\\\\=1.5-x\\[/tex]
[tex]\therefore \\\\\to 1.50-x= 1.35 \\\\\to 1.50-1.35= x\\\\\to 0.15= x\\\\ \to x= 0.15\\\\[/tex]
calculating the pressure in [tex]So_2[/tex]:
[tex]= (1-2 \times 0.15)[/tex]
[tex]= 1-0.30 \\\\ =0.70 \ atm[/tex]
calculating the pressure in [tex]O_2[/tex]:
[tex]= (0.5- 0.15)\\\\= 0.35 \ atm \\[/tex]
calculating the pressure in [tex]So_3[/tex]:
[tex]= (2 \times 0.15)\\\\= (.30) \ atm \\\\[/tex]
Calculating the Kp at 1100 K:
[tex]= \frac{(Pressure(So_3))^2}{(Pressure(So_2))^2 \times Pressure(O_2)}\\\\= \frac{0.30^2}{0.70^2 \times 0.35}\\\\= \frac{0.30 \times 0.30 }{0.70\times 0.70 \times 0.35}\\\\= \frac{0.09 }{0.49\times 0.35} \\\\= \frac{0.09 }{0.1715} \\\\= 0.5247 \ \ or \ \ 0.525 \ \ atm^{-1} \\\\[/tex]