a and b are vectors that are not parallel.
FG = 2a − 3b
-
Choose all of the vectors below which are parallel to
FG.
a-b10a-15
3a-2b-4a+6b 2a + 3b
2a-3b-4a 2a-12b +4a + 3b

a and b are vectors that are not parallel FG 2a 3b Choose all of the vectors below which are parallel to FG ab10a15 3a2b4a6b 2a 3b 2a3b4a 2a12b 4a 3b class=

Respuesta :

Answer:it is a

Step-by-step explanation:

Answer:

[tex]\boxed{\textbf{a}-\dfrac{3}{2}\textbf{b}}[/tex]

[tex]\boxed{10 \textbf{a}-15\textbf{b}}[/tex]

[tex]\boxed{-4 \textbf{a}+6\textbf{b}}[/tex]

[tex]\boxed{2\textbf{a}-12\textbf{b}+4\textbf{a}+3\textbf{b}}[/tex]

Step-by-step explanation:

Given vector:

[tex]\overrightarrow{\rm FG}=2 \textbf{a}-3\textbf{b}[/tex]

Two vectors are parallel if one can be written as a scalar multiple of the other.

Therefore, the following vectors are parallel to FG:

[tex]\textbf{a}-\dfrac{3}{2}\textbf{b}=\dfrac{1}{2}(2 \textbf{a}-3\textbf{b})[/tex]

[tex]10 \textbf{a}-15\textbf{b}=5(2 \textbf{a}-3\textbf{b})[/tex]

[tex]-4 \textbf{a}+6\textbf{b}=-2(2 \textbf{a}-3\textbf{b})[/tex]

[tex]2\textbf{a}-12\textbf{b}+4\textbf{a}+3\textbf{b}=6\textbf{a}-9\textbf{b}=3(2 \textbf{a}-3\textbf{b})[/tex]