A Ferris wheel at a carnival has a radius of 38 feet. Suppose a passenger is traveling at 5 miles per hour. (A usual fact: 1 mi = 5280 ft).A) Find the angular speed of the wheel in radians per minute.B) Find the number of revolutions the wheel makes per hour.

Respuesta :

Answer:

a

[tex]w =  11.58 \ rad/minutes[/tex]

b

[tex]R_h  =  111 \ revolution\ per  \  hour[/tex]

Step-by-step explanation:

From  the question we told that

    The radius of the wheel is  [tex]r = 38 \  ft[/tex]

     The  speed of the passenger is  [tex]v  =  5 \  miles /hr = \frac{26400}{3600} = 7.33 \ ft / s[/tex]

  Generally the angular speed is mathematically represented as

     [tex]w =  \frac{v}{r}[/tex]

=>   [tex]w =  \frac{7.3}{ 38}[/tex]

=>   [tex]w =  0.193 \ rad/s[/tex]

now converting the seconds to minutes

        [tex]w =  0.193 *60[/tex]

        [tex]w =  11.58 \ rad/minutes[/tex]

Generally number of revolutions the wheel makes per minutes is mathematically represented as

     [tex]R = \frac{11.58 }{2 \pi}[/tex]

      [tex]R = 1.84 \ rpm[/tex]

Generally number of revolutions the wheel makes per hour  is mathematically represented as

       [tex]R_h  =   R *  60[/tex]

=>     [tex]R_h  =  1.84 * 60[/tex]

=>    [tex]R_h  =  111 \ revolution\ per  \  hour[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico