Respuesta :

Answer:

12√3 is the correct answer

Ver imagen propgt8

Let AO intersect BC at D

ΔAOB = ΔBOC = ΔAOC (SAS)

AB = BC = AC

ΔABC is equilateral

O is the circumcenter of equilateral ΔABC

Therefore, O is also the centroid of ΔABC

AO / AD = 2/3

2[tex]\sqrt{3}[/tex] / AD = 2/3

AD = 3[tex]\sqrt{3}[/tex]

Right triangle ADB has ∠ABD = 60°

AB / AD = 2/[tex]\sqrt{3}[/tex]

AB / 3[tex]\sqrt{3}[/tex] = 2/[tex]\sqrt{3}[/tex]

AB = 6

Perimeter of ΔABC = 6 + 6 + 6 =18

RELAXING NOICE
Relax