Answer:
[tex]T=92.16 \°C[/tex]
[tex]y_{et}=0.433\\\\y_w=0.567[/tex]
Explanation:
Hello,
In this case, the Raoult's law for this problem is:
[tex]y_{et}P=x_{et}P_{et}^{sat}\\\\y_{w}P=x_{w}P_{w}^{sat}[/tex]
Which can be written as:
[tex]P=x_{et}P_{et}^{sat}+x_{w}P_{w}^{sat}[/tex]
Thus, by using the Antoine equation, we can symbolically represent the the temperature at which such mixture boil:
[tex]1atm=0.2608*10^{(8.13484-\frac{ 1662.48}{238.131+T})}/760+0.7392*10^{(5.40221-\frac{1838.675}{-31.737+T-273.15})}/1.01325[/tex]
The solution, by numerical iteration process (there is not way to solve it analytically) is 92.16 °C considering the data extracted from NIST database. Next, vapor fractions are:
[tex]y_{et}=x_{et}*10^{(8.13484-\frac{ 1662.48}{238.131+T})}/760/P\\\\y_{et}=0.2608*10^{(8.13484-\frac{ 1662.48}{238.131+92.16})}/760/1atm\\\\y_{et}=0.433\\\\y_w=1-y_{et}=1-0.433\\\\y_w=0.567[/tex]
Regards.