Answer:
[tex]\mathbf{\iiint_W (x^2+y^2) \ dx \ dy \ dz = \dfrac{2}{15}}[/tex]
Step-by-step explanation:
Given that:
[tex]\iiint_W (x^2+y^2) \ dx \ dy \ dz[/tex]
where;
the top vertex = (0,0,1) and the base vertices at (0, 0, 0), (1, 0, 0), (0, 1, 0), and (1, 1, 0)
As such , the region of the bounds of the pyramid is: (0 ≤ x ≤ 1-z, 0 ≤ y ≤ 1-z, 0 ≤ z ≤ 1)
[tex]\iiint_W (x^2+y^2) \ dx \ dy \ dz = \int ^1_0 \int ^{1-z}_0 \int ^{1-z}_0 (x^2+y^2) \ dx \ dy \ dz[/tex]
[tex]\iiint_W (x^2+y^2) \ dx \ dy \ dz = \int ^1_0 \int ^{1-z}_0 ( \dfrac{(1-z)^3}{3}+ (1-z)y^2) dy \ dz[/tex]
[tex]\iiint_W (x^2+y^2) \ dx \ dy \ dz = \int ^1_0 \ dz \ ( \dfrac{(1-z)^3}{3} \ y + \dfrac {(1-z)y^3)}{3}] ^{1-x}_{0}[/tex]
[tex]\iiint_W (x^2+y^2) \ dx \ dy \ dz = \int ^1_0 \ dz \ ( \dfrac{(1-z)^4}{3}+ \dfrac{(1-z)^4}{3}) \ dz[/tex]
[tex]\iiint_W (x^2+y^2) \ dx \ dy \ dz =\dfrac{2}{3} \int^1_0 (1-z)^4 \ dz[/tex]
[tex]\iiint_W (x^2+y^2) \ dx \ dy \ dz =- \dfrac{2}{15}(1-z)^5|^1_0[/tex]
[tex]\mathbf{\iiint_W (x^2+y^2) \ dx \ dy \ dz = \dfrac{2}{15}}[/tex]