Answer:
F. [tex]\mathsf{\Delta G^0 \simeq -29.4 \ kJ}[/tex]
Explanation:
GIven that:
The chemical equation for the reaction is:
[tex]\mathtt{Fe_2O_{3(s)} + 3CO_{(g)} \to 2Fe _{(s)} + 3CO_{2(g)}}[/tex]
The value of the ΔG° (kJ/mol) at 25 °C
[tex]\Delta G^0 = \begin {pmatrix} 2( \Delta G_f^0 \ Fe_{(s)} )+ 3 ( \Delta G_f^0 \ CO_{2(g)} ) - 1 ( \Delta G_f^0 \ Fe_2CO_3_{(s)} + 3 ( ( \Delta G_f^0 \ CO _{(g)} ) \end {pmatrix}[/tex]
where;
[tex]\Delta G_f^0 \ Fe_{(s)} = 0[/tex]
[tex]\Delta G_f^0 \ CO_{2(g)} = -394.359 \ kJ/mole[/tex]
[tex]\Delta G_f^0 \ Fe_2CO_3_{(s)} = -742.2 \ kJ/mole[/tex]
[tex]\Delta G_f^0 \ CO _{(g)}= -137.168\ kJ/mole[/tex]
Replacing the values ; we have
[tex]\Delta G^0 = \begin {pmatrix} 2(0 )+ 3 ( -394.359 ) ) -( 1 (-742.2) + 3 (-137.168 ) \end {pmatrix}[/tex]
[tex]\Delta G^0 = \begin {pmatrix} 0 -1183.077 ) -(-742.2- 411.504 \end {pmatrix}[/tex]
[tex]\Delta G^0 = \begin {pmatrix} -1183.077 +742.2+ 411.504 \end {pmatrix}[/tex]
[tex]\mathtt{\Delta G^0 = -29.373 \ kJ}[/tex]
[tex]\mathsf{\Delta G^0 \simeq -29.4 \ kJ}[/tex]