Someone please help me!!!!

Answer:
Below.
Step-by-step explanation:
Left side = 2 cos^2 ( π/4 - A/2) - 1
= 2 ( cos π/4 cos A/2 + sin π/4 sin A/2)^2 - 1
Now sin π/4 and cos π/4 = 1 /√2 so:
= 2 ( 1/√2 cos A/2 + 1/√2 sin A/2)^2 - 1
= 2 * 1/2( cos^2 A/2 + sin^2 A/2 + 2 sin A/2 cos A/2) - 1
But cos^2 a/2 + sin^2 A/2 = 1 so we have:
2 * 1/2( 1 + 2sin A/2 cos A/2) - 1
= 1 + 2 sin A/2 cos A/2 - 1
= 2 sin A/2 cos A/2
Using the identity 2 sin A cos A = sin 2A
2 sin A/2 cos A/2 = sin A = right side.
So left side = right side and the identity is proved.
Answer: see proof below
Step-by-step explanation:
Use the Double Angle Identity: cos 2A = 2cos²A - 1
Use the Difference Identity: cos (A - B) = cosA · cosB + sinA · sinB
Use the Unit Circle to evaluate: cos (π/2) = 0 & sin (π/2) = 1
Proof LHS → RHS
[tex]\text{Given:}\qquad \qquad \qquad \qquad 2\cos^2\bigg(\dfrac{\pi}{4}-\dfrac{A}{2}\bigg)-1\\\\\\\text{Double Angle Identity:}\quad \cos2\bigg(\dfrac{\pi}{4}-\dfrac{A}{2}\bigg)\\\\\\\text{Simplify:}\qquad \qquad \qquad \quad \cos\bigg(\dfrac{\pi}{2}-A\bigg)\\\\\\\text{Difference Identity:}\qquad \cos\dfrac{\pi}{2}\cdot \cos A+\sin \dfrac{\pi}{2}\cdot \sin A\\\\\\\text{Unit Circle:}\qquad \qquad \qquad 0\cdot \cos A+1\cdot \sin A\\\\\\\text{Simplify:}\qquad \qquad \qquad \qquad \sin A[/tex]
LHS = RHS: sin A = sin A [tex]\checkmark[/tex]