Respuesta :

Answer:

B. [tex] \frac{7x^2 + 11x}{x^2 + 6x + 5} [/tex]

Step-by-step explanation:

The sum is worked as shown below:

[tex] \frac{x}{x + 1} + \frac{6x}{x + 5} [/tex]

Use the common denominator to divide each denominator, then use the result to multiply the numerator, you'd have the following:

[tex] \frac{x(x + 5) + 6x(x + 1)}{(x + 1)(x + 5)} [/tex]

Use the distributive property of multiplication to solve

[tex] \frac{x(x) + x(5) + 6x(x) + 6x(1)}{(x(x + 5) + 1(x + 5)} [/tex]

[tex] \frac{x^2 + 5x + 6x^2 + 6x}{x^2 + 5x + x + 5} [/tex]

Pair like terms

[tex] \frac{x^2 + 6x^2 + 5x + 6x}{x^2 + 6x + 5} [/tex]

[tex] \frac{7x^2 + 11x}{x^2 + 6x + 5} [/tex]

The answer is B.

RELAXING NOICE
Relax