System of Equations
Need help
Trig

Looks like the system is
[tex]\begin{cases}-2x+y+6z=1\\3x+2y+5z=16\\7x+3y-4z=11\end{cases}[/tex]
We can eliminate [tex]y[/tex] by taking
[tex](3x+2y+5z)-2(-2x+y+6z)=16-2(1)[/tex]
[tex]\implies3x+2y+5z+4x-2y-12z=16-2[/tex]
[tex]\implies7x-7z=14[/tex]
[tex]\implies x-z=2[/tex]
so that [tex]z=x-2[/tex], and
[tex](7x+3y-4z)-3(-2x+y+6z)=11-3(1)[/tex]
[tex]\implies7x+3y-4z+6x-3y-18z=11-3[/tex]
[tex]\implies13x-22z=8[/tex]
Substitute [tex]z=x-2[/tex] into this last equation and solve for [tex]x[/tex]:
[tex]13x-22(x-2)=8[/tex]
[tex]\implies13x-22x+44=8[/tex]
[tex]\implies-9x=-36[/tex]
[tex]\implies x=4[/tex]
Then
[tex]z=x-2[/tex]
[tex]\implies z=4-2[/tex]
[tex]\implies z=2[/tex]
Plug these values into any one of the original equation to solve for [tex]y[/tex]:
[tex]-2x+y+6z=1[/tex]
[tex]\implies-2(4)+y+6(2)=1[/tex]
[tex]\implies-8+y+12=1[/tex]
[tex]\implies y=-3[/tex]
Hence the solution is x = 4, y = -3, and z = 2.