In the circle below, O is the center and mĞ= 128° What is the measure of angle HIG?

Answer:
26 degrees.
Step-by-step explanation:
From the figure it is clear that HI is the diameter and [tex]acr(GI)=128^{\circ}[/tex]. So,
[tex]\angle GOI=128^{\circ}[/tex]
[tex]\angle GOI+\angle GOH=180^{\circ}[/tex] (linear pair)
[tex]128^{\circ}+\angle GOH=180^{\circ}[/tex]
[tex]\angle GOH=180^{\circ}-128^{\circ}[/tex]
[tex]\angle GOH=52^{\circ}[/tex]
Using central angle theorem of a circle, we get
[tex]\angle HIG=\dfrac{\angle GOH}{2}[/tex]
[tex]\angle HIG=\dfrac{52^{\circ}}{2}[/tex]
[tex]\angle HIG=26^{\circ}[/tex]
Therefore, the measure of angle HIG is 26 degrees.