An airport is located next to a housing development. Profits to the airport are simply 20 f-f 2, where f is the number of flights per day. The housing developers profits are 28hh2-h, where h is the number of houses and f is the number of flights per day. If the airport is not required to pay the developer for any "damages" from the flights, how many houses will the developer build

Respuesta :

Answer:

The total number of houses are "9". The further explanation is given below.

Step-by-step explanation:

The given values are:

height,

h =  28h - h²

Housing profit of developers will be:

⇒  [tex]\pi^h=28h-h^2-hf[/tex]

If airport won't pay any cost for the damage,

⇒  [tex]\pi^A=20f-f^2[/tex]

then,

⇒  [tex]\frac{\partial \pi^A}{\partial f}[/tex] = [tex]20-2f =0[/tex]

                      [tex]20=2f[/tex]  

                       [tex]f=\frac{20}{2}[/tex]

                       [tex]f=10[/tex]

On putting the value of "f", we get

⇒  [tex]\pi^h=28h-h^2-10h[/tex]

         [tex]=18h-h^2[/tex]

⇒  [tex]\frac{\partial \pi h}{\partial h}=18-2h=0[/tex]

                      [tex]2h=18[/tex]

                        [tex]h=\frac{18}{2}[/tex]

                        [tex]h=9[/tex]

So that the total number of house built by the developers will be "9".