Answer:
[tex]\hat p =\frac{X}{n}[/tex]
And replacing we got:
[tex]\hat p =\frac{132}{146}= 0.904[/tex]
And for this case the standard error assuming normality would be given by:
[tex] SE= \sqrt{\frac{\hat p (1-\hat p)}{n}}[/tex]
And replacing we got:
[tex]SE= \sqrt{\frac{0.904*(1-0.904)}{146}}= 0.024[/tex]
Step-by-step explanation:
For this problem we know the following notation:
[tex] n= 146 [/tex] represent the sample size selected
[tex] X= 132[/tex] represent the number of airplane travelers who after a flight would fly that airline again
The estimated proportion for this case would be:
[tex]\hat p =\frac{X}{n}[/tex]
And replacing we got:
[tex]\hat p =\frac{132}{146}= 0.904[/tex]
And for this case the standard error assuming normality would be given by:
[tex] SE= \sqrt{\frac{\hat p (1-\hat p)}{n}}[/tex]
And replacing we got:
[tex]SE= \sqrt{\frac{0.904*(1-0.904)}{146}}= 0.024[/tex]