contestada

Solve the following system of equations. What is one x-value of a solution?
f(x) = x2 + 4x + 10 g(x) = -32x - 40

a. x = 5

b. x = -5

c. x = 6

d. x = 2

Respuesta :

Answer:

There is some mistake in the question, because the solutions are x = -1.445 and x = -34.555

Step-by-step explanation:

Given the functions:

f(x) = x² + 4x + 10

g(x) = -32x - 40

we want to find the points at which f(x) = g(x).

x² + 4x + 10 = -32x - 40

x² + 4x + 10 + 32x + 40 = 0

x² + 36x + 50 = 0

Using quadratic formula:

[tex]x = \frac{-b \pm \sqrt{b^2-4(a)(c)}}{2(a)} [/tex]

[tex]x = \frac{-36 \pm \sqrt{36^2-4(1)(50)}}{2(1)} [/tex]

[tex]x = \frac{-36 \pm 33.11}{2} [/tex]

[tex]x_1 = \frac{-36 + 33.11}{2} [/tex]

[tex]x_1 = -1.445 [/tex]

[tex]x_2 = \frac{-36 - 33.11}{2} [/tex]

[tex]x_2 = -34.555[/tex]