Answer:
RQ=35.51 km
PR=34.62 km
Step-by-step explanation:
Bearing of Q from P = 72 degrees
Bearing of R from Q=320 degrees
320=270+50
Therefore, the second angle of Q is 50 degrees.
[tex]\angle P=72^\circ\\\angle Q=68^\circ\\\angle R=180^\circ-(72^\circ+68^\circ)=40^\circ[/tex]
Using Law of Sines
[tex]\dfrac{r}{\sin R} =\dfrac{p}{\sin P} \\\dfrac{24}{\sin 40} =\dfrac{p}{\sin 72} \\p=\sin 72 \times \dfrac{24}{\sin 40}\\\\p=RQ=35.51$ km[/tex]
Using Law of Sines
[tex]\dfrac{q}{\sin Q} =\dfrac{r}{\sin R} \\\dfrac{q}{\sin 68} =\dfrac{24}{\sin 40} \\q=\dfrac{24}{\sin 40}\times \sin 68\\\\q=PR=34.62$ km[/tex]