Answer:
[tex] \boxed{\sf \huge \boxed{ \sf ?} = 6} [/tex]
Step-by-step explanation:
[tex] \sf Solve \: for \: \boxed{ \sf ?} : \\ \sf \implies \frac{\boxed{ \sf ?}}{5} \times \frac{10}{8} = 1.5 \\ \\ \sf \implies \frac{\boxed{ \sf ?} \times 10}{5 \times 8} = 1.5 \\ \\ \sf \frac{10}{5} = \frac{ \cancel{5} \times 2}{ \cancel{5}} = 2 : \\ \sf \implies \frac{ \boxed{ \sf 2} \times \boxed{ \sf ?} }{8} = 1.5 \\ \\ \sf \frac{2}{8} = \frac{ \cancel{2}}{ \cancel{2} \times 4} = \frac{1}{4} : \\ \sf \implies \frac{\boxed{ \sf ?}}{ \boxed{ \sf 4}} = 1.5 \\ \\ \sf Multiply \: both \: sides \: of \: \frac{\boxed{ \sf ?}}{4} = 1.5 \: by \: 4 : \\ \sf \implies \frac{4 \times \boxed{ \sf ?}}{4} = 4 \times 1.5 \\ \\ \sf \frac{4 \times \boxed{ \sf ?}}{4} = \frac{ \cancel{4}}{ \cancel{4}} \times \boxed{ \sf ?} = \boxed{ \sf ?} : \\ \sf \implies \boxed{\boxed{ \sf ?}} = 4 \times 1.5 \\ \\ \sf 4 \times 1.5 = 6 : \\ \sf \implies \boxed{ \sf ?} = 6[/tex]