Respuesta :
Answer:
Check below, please
Step-by-step explanation:
Hello!
1) In the Newton Method, we'll stop our approximations till the value gets repeated. Like this
[tex]x_{1}=2\\x_{2}=2-\frac{f(2)}{f'(2)}=2.5\\x_{3}=2.5-\frac{f(2.5)}{f'(2.5)}\approx 2.4166\\x_{4}=2.4166-\frac{f(2.4166)}{f'(2.4166)}\approx 2.41421\\x_{5}=2.41421-\frac{f(2.41421)}{f'(2.41421)}\approx \mathbf{2.41421}[/tex]
2) Looking at the graph, let's pick -1.2 and 3.2 as our approximations since it is a quadratic function. Passing through theses points -1.2 and 3.2 there are tangent lines that can be traced, which are the starting point to get to the roots.
We can rewrite it as: [tex]x^2-2x-4=0[/tex]
[tex]x_{1}=-1.1\\x_{2}=-1.1-\frac{f(-1.1)}{f'(-1.1)}=-1.24047\\x_{3}=-1.24047-\frac{f(1.24047)}{f'(1.24047)}\approx -1.23607\\x_{4}=-1.23607-\frac{f(-1.23607)}{f'(-1.23607)}\approx -1.23606\\x_{5}=-1.23606-\frac{f(-1.23606)}{f'(-1.23606)}\approx \mathbf{-1.23606}[/tex]
As for
[tex]x_{1}=3.2\\x_{2}=3.2-\frac{f(3.2)}{f'(3.2)}=3.23636\\x_{3}=3.23636-\frac{f(3.23636)}{f'(3.23636)}\approx 3.23606\\x_{4}=3.23606-\frac{f(3.23606)}{f'(3.23606)}\approx \mathbf{3.23606}\\[/tex]
3) Rewriting and calculating its derivative. Remember to do it, in radians.
[tex]5\cos(x)-x-1=0 \:and f'(x)=-5\sin(x)-1[/tex]
[tex]x_{1}=1\\x_{2}=1-\frac{f(1)}{f'(1)}=1.13471\\x_{3}=1.13471-\frac{f(1.13471)}{f'(1.13471)}\approx 1.13060\\x_{4}=1.13060-\frac{f(1.13060)}{f'(1.13060)}\approx 1.13059\\x_{5}= 1.13059-\frac{f( 1.13059)}{f'( 1.13059)}\approx \mathbf{ 1.13059}[/tex]
For the second root, let's try -1.5
[tex]x_{1}=-1.5\\x_{2}=-1.5-\frac{f(-1.5)}{f'(-1.5)}=-1.71409\\x_{3}=-1.71409-\frac{f(-1.71409)}{f'(-1.71409)}\approx -1.71410\\x_{4}=-1.71410-\frac{f(-1.71410)}{f'(-1.71410)}\approx \mathbf{-1.71410}\\[/tex]
For x=-3.9, last root.
[tex]x_{1}=-3.9\\x_{2}=-3.9-\frac{f(-3.9)}{f'(-3.9)}=-4.06438\\x_{3}=-4.06438-\frac{f(-4.06438)}{f'(-4.06438)}\approx -4.05507\\x_{4}=-4.05507-\frac{f(-4.05507)}{f'(-4.05507)}\approx \mathbf{-4.05507}\\[/tex]
5) In this case, let's make a little adjustment on the Newton formula to find critical numbers. Remember their relation with 1st and 2nd derivatives.
[tex]x_{n+1}=x_{n}-\frac{f'(n)}{f''(n)}[/tex]
[tex]f(x)=x^6-x^4+3x^3-2x[/tex]
[tex]\mathbf{f'(x)=6x^5-4x^3+9x^2-2}[/tex]
[tex]\mathbf{f''(x)=30x^4-12x^2+18x}[/tex]
For -1.2
[tex]x_{1}=-1.2\\x_{2}=-1.2-\frac{f'(-1.2)}{f''(-1.2)}=-1.32611\\x_{3}=-1.32611-\frac{f'(-1.32611)}{f''(-1.32611)}\approx -1.29575\\x_{4}=-1.29575-\frac{f'(-1.29575)}{f''(-4.05507)}\approx -1.29325\\x_{5}= -1.29325-\frac{f'( -1.29325)}{f''( -1.29325)}\approx -1.29322\\x_{6}= -1.29322-\frac{f'( -1.29322)}{f''( -1.29322)}\approx \mathbf{-1.29322}\\[/tex]
For x=0.4
[tex]x_{1}=0.4\\x_{2}=0.4\frac{f'(0.4)}{f''(0.4)}=0.52476\\x_{3}=0.52476-\frac{f'(0.52476)}{f''(0.52476)}\approx 0.50823\\x_{4}=0.50823-\frac{f'(0.50823)}{f''(0.50823)}\approx 0.50785\\x_{5}= 0.50785-\frac{f'(0.50785)}{f''(0.50785)}\approx \mathbf{0.50785}\\[/tex]
and for x=-0.4
[tex]x_{1}=-0.4\\x_{2}=-0.4\frac{f'(-0.4)}{f''(-0.4)}=-0.44375\\x_{3}=-0.44375-\frac{f'(-0.44375)}{f''(-0.44375)}\approx -0.44173\\x_{4}=-0.44173-\frac{f'(-0.44173)}{f''(-0.44173)}\approx \mathbf{-0.44173}\\[/tex]
These roots (in bold) are the critical numbers



