Respuesta :
Answer:
W = 3.21x10⁻¹¹ J
Explanation:
The work required to separate the plates can be calculated using the following equation:
[tex] W = U_{2} - U_{1} = \frac{1}{2}(C_{2}V_{2}^{2} - C_{1}V_{1}^{2}) [/tex]
Where:
U₂: is the final stored energy
U₁: is the initial stored energy
C₂: is the final capacitance
C₁: is the initial capacitance
V₁: is the initial potential difference = 5.00 V
V₂: is the final potential difference
The initial and final capacitance is:
[tex] C_{1} = \epsilon_{0}*\frac{A}{d_{1}} [/tex]
Where:
ε₀: is the vacuum permittivity = 8.85x10⁻¹² C²/(N*m²)
d: is the initial distance = 3.00 mm = 3.00x10⁻³ m
A: is the plate area = 865 mm² = 8.65x10⁻⁴ m²
[tex] C_{1} = \epsilon_{0}*\frac{A}{d_{1}} = 8.85 \cdot 10^{-12} C^{2}/(N*m^{2})*\frac{8.65 \cdot 10^{-4} m^{2}}{3.00 \cdot 10^{-3} m} = 2.55 \cdot 10^{-12} F [/tex]
Similarly, C₂ is:
[tex]C_{2} = \epsilon_{0}*\frac{A}{d_{2}} = 8.85 \cdot 10^{-12} C^{2}/(N*m^{2})*\frac{8.65 \cdot 10^{-4} m^{2}}{3.00 + 3.00 \cdot 10^{-3} m} = 1.28 \cdot 10^{-12} F[/tex]
Now, V₂ can be calculated by finding the initial charge (q₁):
[tex] q_{1} = C_{1}V_{1} = 2.55 \cdot 10^{-12} F*5.00 V = 1.28 \cdot 10^{-11} C [/tex]
Since, q₁ is equal to q₂, V₂ is:
[tex] V_{2} = \frac{q_{2}}{C_{2}} = \frac{1.28 \cdot 10^{-11} C}{1.28 \cdot 10^{-12} F} = 10 V [/tex]
Finally, we can find the work:
[tex] W = \frac{1}{2}(C_{2}V_{2}^{2} - C_{1}V_{1}^{2}) = \frac{1}{2}(1.28 \cdot 10^{-12} F*(10 V)^{2} - 2.55 \cdot 10^{-12} F(5.00 V)^{2}) = 3.21 \cdot 10^{-11} J [/tex]
Therefore, the work required to separate the plates is 3.21x10⁻¹¹ J.
I hope it helps you!