Find the area of a triangle bounded by the y-axis, the line f(x)=9−2/3x, and the line perpendicular to f(x) that passes through the origin. Area =

Respuesta :

Answer:

The area of the triangle is 18.70 sq.units.

Step-by-step explanation:

It is provided that a triangle is bounded by the y-axis, the line [tex]f(x)=y=9-\frac{2}{3}x[/tex].

The slope of the line is: [tex]m_{1}=-\frac{2}{3}[/tex]

A perpendicular line passes through the origin to the line f (x).

The slope of this perpendicular line is:[tex]m_{2}=-\frac{1}{m_{1}}=\frac{3}{2}[/tex]

The equation of perpendicular line passing through origin is:

[tex]y=\frac{3}{2}x[/tex]

Compute the intersecting point between the lines as follows:

[tex]y=9-\frac{2}{3}x\\\\\frac{3}{2}x=9-\frac{2}{3}x\\\\\frac{3}{2}x+\frac{2}{3}x=9\\\\\frac{13}{6}x=9\\\\x=\frac{54}{13}[/tex]

The value of y is:

[tex]y=\frac{3}{2}x=\frac{3}{2}\times\frac{54}{13}=\frac{81}{13}[/tex]

The intersecting point is [tex](\frac{54}{13},\ \frac{81}{13})[/tex].

The y-intercept of the line f (x) is, 9, i.e. the point is (0, 9).

So, the triangle is  bounded by the points:

(0, 0), (0, 9) and [tex](\frac{54}{13},\ \frac{81}{13})[/tex]

Consider the diagram attached.

Compute the area of the triangle as follows:

[tex]\text{Area}=\frac{1}{2}\times 9\times \frac{54}{13}=18.69231\approx 18.70[/tex]

Thus, the area of the triangle is 18.70 sq.units.

Ver imagen warylucknow
ACCESS MORE