Answer:
The area of the triangle is 18.70 sq.units.
Step-by-step explanation:
It is provided that a triangle is bounded by the y-axis, the line [tex]f(x)=y=9-\frac{2}{3}x[/tex].
The slope of the line is: [tex]m_{1}=-\frac{2}{3}[/tex]
A perpendicular line passes through the origin to the line f (x).
The slope of this perpendicular line is:[tex]m_{2}=-\frac{1}{m_{1}}=\frac{3}{2}[/tex]
The equation of perpendicular line passing through origin is:
[tex]y=\frac{3}{2}x[/tex]
Compute the intersecting point between the lines as follows:
[tex]y=9-\frac{2}{3}x\\\\\frac{3}{2}x=9-\frac{2}{3}x\\\\\frac{3}{2}x+\frac{2}{3}x=9\\\\\frac{13}{6}x=9\\\\x=\frac{54}{13}[/tex]
The value of y is:
[tex]y=\frac{3}{2}x=\frac{3}{2}\times\frac{54}{13}=\frac{81}{13}[/tex]
The intersecting point is [tex](\frac{54}{13},\ \frac{81}{13})[/tex].
The y-intercept of the line f (x) is, 9, i.e. the point is (0, 9).
So, the triangle is bounded by the points:
(0, 0), (0, 9) and [tex](\frac{54}{13},\ \frac{81}{13})[/tex]
Consider the diagram attached.
Compute the area of the triangle as follows:
[tex]\text{Area}=\frac{1}{2}\times 9\times \frac{54}{13}=18.69231\approx 18.70[/tex]
Thus, the area of the triangle is 18.70 sq.units.