Respuesta :
Answer:
A score of 1920 has a z-score of 1.27.
A score of 1290 has a z-score of -0.74.
A score of 2220 has a z-score of 2.23.
A score of 1420 has a z-score of -0.32.
The score of 2220 is more than two standard deviations from the mean, so it is unusual.
Step-by-step explanation:
When the distribution is normal, we use the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
If X is 2 or more standard deviations from the mean, it is considered unusual.
In this question, we have that:
[tex]\mu = 1521, \sigma = 314[/tex]
Score of 1920:
X = 1920. Then
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{1920 - 1521}{314}[/tex]
[tex]Z = 1.27[/tex]
A score of 1920 has a z-score of 1.27.
Score of 1290:
X = 1290. Then
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{1290 - 1521}{314}[/tex]
[tex]Z = -0.74[/tex]
A score of 1290 has a z-score of -0.74.
Score of 2220:
X = 1290. Then
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{2220 - 1521}{314}[/tex]
[tex]Z = 2.23[/tex]
A score of 2220 has a z-score of 2.23.
Since it is more than 2 standard deviations of the mean, the score of 2220 is unusual.
Score of 1420:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{1420 - 1521}{314}[/tex]
[tex]Z = -0.32[/tex]
A score of 1420 has a z-score of -0.32.