Answer:
2.54 miles/hr
2.04 miles/hr
Step-by-step explanation:
Given: Distance between the two towns = 1100 miles
Difference between speeds = [tex]\frac{1}{2}[/tex] miles/hr
Total time when they meet = 240 hours
To find:
Let distance traveled by first group = [tex]x[/tex] miles.
Now, the distance traveled by second group = (1100-[tex]x[/tex]) miles/hr
The relation between Speed, Time and Distance is given as:
[tex]\text{Speed =} \dfrac{\text{Distance}}{\text{Time}}[/tex]
Let speed of first group = [tex]S_1[/tex]
[tex]S_1 = \dfrac{x}{240}[/tex]
Let speed of second group = [tex]S_2[/tex]
[tex]S_2 = \dfrac{1100-x}{240}[/tex]
As per question, [tex]S_1[/tex] = [tex]S_2[/tex] + [tex]\frac{1}{2}[/tex]
[tex]\dfrac{x}{240} = \dfrac{1100-x}{240} + \dfrac{1}{2}\\\Rightarrow \dfrac{x}{240} - \dfrac{1100-x}{240} = \dfrac{1}{2}\\\Rightarrow \dfrac{x-1100+x}{240} = \dfrac{1}{2}\\\Rightarrow 2x - 1100 = 120\\\Rightarrow 2x = 1220\\\Rightarrow x = 610 ft[/tex]
Now,
[tex]S_1 = \dfrac{x}{240}[/tex]
Putting value of [tex]x[/tex]:
[tex]S_1 = \dfrac{610}{240}\\\Rightarrow S_1 = 2.54\ miles/hr[/tex]
Similarly, putting value of [tex]x[/tex] in [tex]S_2[/tex]:
[tex]S_2 = \dfrac{1100-610}{240}\\\Rightarrow S_2=\dfrac{490}{240}\\\Rightarrow S_2 = 2.04\ miles/hr[/tex]