Answer:
see below for the tables
Step-by-step explanation:
The differential equation is separable, so the solution is ...
[tex]\displaystyle\dfrac{dy}{dx}=2xy\\\\\int{\dfrac{dy}{y}}=\int{2x}\,dx\\\\\ln{y}=x^2+C\\\\\text{Considering the initial condition, $C=-1$}\\\\\boxed{y=e^{x^2-1}}[/tex]
__
The values for yn are y+y'·h = y+2xyh. We take the "absolute error" to be the (signed) difference between the calculated yn and the actual value y(x).