contestada


If the measure of AngleB is 40°, what measures can AngleA and AngleC be? Select all that apply.
20° and 30°
30° and 110°
55° and 85°
60° and 90°
70° and 70°

Respuesta :

Answer:

30° and 110°

55° and 85°

70° and 70°

Step-by-step explanation:

Given that:

[tex]\angle B = 90^\circ[/tex]

To find the possible values for the other two angles [tex]\angle A\ and\ \angle C[/tex].

Property of a triangle is that the sum of all three angles is always equal to [tex]180^\circ[/tex].

OR

[tex]\angle A +\angle B +\angle C = 180^\circ\\\Rightarrow \angle A + 40^\circ + \angle C = 180^\circ\\\Rightarrow \angle A + \angle C = 180^\circ - 40^\circ\\\Rightarrow \angle A + \angle C = 140^\circ[/tex]

So, the sum of [tex]\angle A\ and\ \angle C[/tex] should be [tex]140^\circ[/tex]. We can select our answers according to this condition.

Option 1: 20° and 30°: the sum is [tex]50^\circ \neq 140^\circ[/tex] hence, not correct.

Option 2: 30° and 110°: the sum is [tex]140^\circ[/tex] hence, correct.

Option 3: 55° and 85°: the sum is [tex]140^\circ[/tex] hence, correct.

Option 4: 60° and 90°: the sum is [tex]150^\circ \neq 140^\circ[/tex] hence, not correct.

Option 5: 70° and 70°: the sum is [tex]140^\circ[/tex] hence, correct.

Hence, the possible answers can be:

30° and 110°

55° and 85°

70° and 70°

Answer:

30º and 110º

55º and 85º

70º and 70º

Step-by-step explanation:

got it right on edge. !