Answer:
Step-by-step explanation:
Here,
[tex]H_0:\sigma _1 = \sigma _2\\\\H_1:\sigma_1 \neq \sigma_2[/tex]
a) Test Statistic
[tex]F = \frac{S_1^2}{S_1^2} \\\\=\frac{0.37^2}{1,89^2} \\\\=0.04[/tex]
b) Critical value for
[tex]\sigma = 0.1[/tex]
degrees of freedom is
[tex](n_1 - 1, n_2 -1)[/tex]
d.f =(5 - 1, 5 - 1)
d.f = (4, 4)
Fcritical=
[tex]F_{0.1},(4,4)\\\\[/tex]
Fcritical = 4.11
Critical value = 4.11
Here,
F test Statistic < critical value
so we fail to reject null hypothesis H₀
Conclusion
There is insufficient evidence to conclude the standard deviations are different.
we may assume they are equal.