Respuesta :

One way to do this is to exploit the Pythagorean identity,

[tex]\cos^2x+\sin^2x=1[/tex]

to rewrite

[tex]\cos^3(3x)=\cos(3x)\cos^2(3x)=\cos(3x)(1-\sin^2(3x))[/tex]

so that

[tex]\displaystyle\int\cos^3(3x)\sin^7(3x)\,\mathrm dx=\int\cos(3x)\left(\sin^7(3x)-\sin^9(3x)\right)\,\mathrm dx[/tex]

Then substitute [tex]u=\sin(3x)[/tex] and [tex]\frac{\mathrm du}3=\cos(3x)\,\mathrm dx[/tex] to get the integral

[tex]\displaystyle\frac13\int u^7-u^9\,\mathrm du=\frac13\left(\frac{u^8}8-\frac{u^{10}}{10}\right)+C[/tex]

[tex]=\boxed{\dfrac{\sin^8(3x)}{24}-\dfrac{\sin^{10}(3x)}{30}+C}[/tex]

which is one correct form of the antiderivative. There's no reason we can't use the identity from before to express the integrand in terms of powers of cos(3x) instead.

ACCESS MORE
EDU ACCESS
Universidad de Mexico