Answer:
[tex]9\sqrt{15}*cis(\dfrac{19\pi}{24})[/tex]
Step-by-step explanation:
To multiplying complex numbers in polar form, follow these steps:
Given the two complex number in polar form
[tex]3\sqrt{3}\:cis(\dfrac{\pi}{8})\:\:and\:\:3\sqrt{5}\:cis(\dfrac{2\pi}{3})\\\\3\sqrt{3}\:cis(\dfrac{\pi}{8})*3\sqrt{5}\:cis(\dfrac{2\pi}{3})=(3\sqrt{3}*3\sqrt{5})*cis(\dfrac{\pi}{8}+\dfrac{2\pi}{3})[/tex]
[tex]=9\sqrt{15}*cis(\dfrac{3\pi+8*2\pi}{24})\\\\=9\sqrt{15}*cis(\dfrac{19\pi}{24})[/tex]