Answer:
a) [tex]46.14-3.707\frac{1.19}{\sqrt{7}}=44.47[/tex]
[tex]46.14+3.707\frac{1.19}{\sqrt{7}}=47.81[/tex]
b) For this case the upper limit for the confidence interval is lower than 48 so then at 1% of significance we can't conclude that the claim given is true.
c) [tex] ME = t_{\alpha/2}\frac{s}{\sqrt{n}}[/tex]
If we reduce the sample size from 30 to 10 we will have an interval wider since the margin of error would be larger
Step-by-step explanation:
Data given
[tex]\bar X=46.14[/tex] represent the sample mean
[tex]\mu[/tex] population mean
s=1.19 represent the sample standard deviation
n=7 represent the sample size
Part a
The confidence interval for the mean is given by the following formula:
[tex]\bar X \pm t_{\alpha/2}\frac{s}{\sqrt{n}}[/tex] (1)
The degrees of freedom are given by:
[tex]df=n-1=7-1=6[/tex]
The Confidence level is 0.99 or 99%, the significance would be [tex]\alpha=0.01[/tex] and [tex]\alpha/2 =0.005[/tex], and the critical value for this case is [tex]t_{\alpha/2}=3.707[/tex]
Replacing we got:
[tex]46.14-3.707\frac{1.19}{\sqrt{7}}=44.47[/tex]
[tex]46.14+3.707\frac{1.19}{\sqrt{7}}=47.81[/tex]
Part b
For this case the upper limit for the confidence interval is lower than 48 so then at 1% of significance we can't conclude that the claim given is true.
Part c
For this case we need to take in count that the margin of error is given by:
[tex] ME = t_{\alpha/2}\frac{s}{\sqrt{n}}[/tex]
If we reduce the sample size from 30 to 10 we will have an interval wider since the margin of error would be larger