Respuesta :

Answer:

[tex]y = - \frac{5}{3} x + 12[/tex]

Step-by-step explanation:

First, rewrite the given equation in the form of y=mx+c.

m is the gradient while c is the y-intercept.

3x-5y=8

5y= 3x -8

[tex]y = \frac{3}{5} x - \frac{8}{5} [/tex]

Thus, the gradient of the given equation is ⅗.

The product of the gradients of perpendicular lines is -1.

(gradient of line)(⅗) = -1

gradient of line= -1 ÷⅗

gradient of line= [tex] - \frac{5}{3} [/tex]

[tex]y = - \frac{5}{3} x + c[/tex]

To find the value of c, substitute a coordinate.

When x=3, y=7,

[tex]7 = - \frac{5}{3} (3) + c[/tex]

7= -5 +c

c= 7+5

c= 12

Hence, the equation of the line is [tex]y = - \frac{5}{3} x + 12[/tex].

ACCESS MORE
EDU ACCESS
Universidad de Mexico