Respuesta :
Answer:
a) [tex]T = 26.147\times 10^{7}\,y[/tex], b) [tex]1.520\times 10^{13}[/tex] solar masses
Explanation:
Let suppose that galaxy can be treated as a puntual mass.
a) The acceleration experimented by the star is:
[tex]a_{r} = G\cdot \frac{M}{r^{2}}[/tex]
[tex]a_{r} = \left(6.674\times 10^{-11}\,\frac{m^{3}}{kg\cdot s^{2}} \right)\cdot (8.0\times 10^{11})\cdot\frac{\left(1.989\times 10^{30}\,kg\right)}{\left[(6.0\times 10^{4}\,ly)\cdot \left(9.461\times 10^{15}\,\frac{m}{ly} \right)\right]^{2}}[/tex]
[tex]a_{r} = 3.296\times 10^{-10}\,\frac{m}{s^{2}}[/tex]
The angular speed of the star is:
[tex]\omega = \sqrt{\frac{a_{r}}{r} }[/tex]
[tex]\omega = \sqrt{\frac{3.296\times 10^{-10}\,\frac{m}{s^{2}} }{(6.0\times 10^{4})\cdot (9.461\times 10^{15}\,\frac{m}{ly} )} }[/tex]
[tex]\omega = 7.62\times 10^{-16}\,\frac{rad}{s}[/tex]
The period is:
[tex]T = \frac{2\pi}{\omega}[/tex]
[tex]T = \frac{2\pi}{7.62\times 10^{-16}\,\frac{rad}{s} }[/tex]
[tex]T = 8.246\times 10^{15}\,s[/tex]
[tex]T = 26.147\times 10^{7}\,y[/tex]
b) The period is:
[tex]T = 6\times 10^{7}\,y[/tex]
[tex]T = 1.892\times 10^{15}\,s[/tex]
The angular speed is:
[tex]\omega = \frac{2\pi}{1.892\times 10^{15}\,s}[/tex]
[tex]\omega = 3.321\times 10^{-15}\,\frac{rad}{s}[/tex]
The acceleration experimented by the star is:
[tex]a_{r} = \left(3.321\times 10^{-15}\,\frac{rad}{s} \right)^{2}\cdot (6\times 10^{4}\,ly)\cdot \left(9.461\times 10^{15}\,\frac{m}{ly} \right)[/tex]
[tex]a_{r} = 6.261\times 10^{-9}\,\frac{m}{s^{2}}[/tex]
The mass of the galaxy is:
[tex]M = \frac{a_{r}\cdot r^{2}}{G}[/tex]
[tex]M = \frac{\left(6.261\times 10^{-9}\,\frac{m}{s^{2}} \right)\cdot \left[(6.0\times 10^{4}\ly)\cdot (9.461\times 10^{15}\,\frac{m}{ly} )\right]^{2}}{6.674\times 10^{-11}\,\frac{m^{3}}{kg\cdot s^{2}} }[/tex]
[tex]M = 3.023\times 10^{43}\,kg[/tex]
Which is equal to [tex]1.520\times 10^{13}[/tex] solar masses.
A) The Orbital period of the star in milky way galaxy is : 2.88 * 10⁸ y
B) The mass of the galaxy when the period is 6.0 * 10⁷ y is = 1.53 * 10¹³ solar mass
Given data :
Mass of milky way galaxy = 8.0 * 10¹¹ solar masses
Radius of star orbiting on the galaxy periphery = 6.0 * 10⁴ light years
A) Determine the orbital period ( T ) of the star
The orbital period of a star in a milky way galaxy is calculated using the relation below
T² = [tex](\frac{4\pi ^{2} }{GM} )R^{3}[/tex] ---- ( 1 )
First step : convert the mass and radius to Kg and M
Where : Mass of milky way galaxy ( M ) = 8.0*10¹¹ solar masses = 1.59 * 10⁴² kg, Radius ( R ) = 6.0 * 10⁴ light years = 6.07 * 10²⁰ m, G = 6.673 * 10⁻¹¹ N.m²/kg²
Insert the values into equation ( 1 )
∴ T = 2.88 * 10⁸ years .
B) Determine the mass of the galaxy
From equation ( 1 )
M = [tex]\frac{4\pi ^{2} }{G} * \frac{R^{3} }{T^{2} }[/tex] ---- ( 2 )
where : G = 6.673 * 10⁻¹¹ N.m²/kg², R = 5.7 * 10²⁰ m, T = 1.896 * 10¹⁵ s ( 6.0 * 10⁷ y )
Insert values the values into equation ( 2 )
M = 1.53 * 10¹³ solar mass
Hence we can conclude that the The Orbital period of the star in milky way galaxy is : 2.88 * 10⁸ y, The mass of the galaxy when the period is 6.0 * 10⁷ y is = 1.53 * 10¹³ solar mass.
learn more about milky way galaxy : https://brainly.com/question/25710341