Answer: 3a = (0, 1) 3b = (2, 1) 3c = (2.5, 1) 3d = (1.6, 1)
4a = (2, 3.5) 4b = (2, 3) 4c = (2, 5.375)
Step-by-step explanation:
The length of AB is 6 and is horizontal (affects the x-coordinate)
[tex]3a)\quad 6\bigg(\dfrac{1}{2}\bigg)\quad =3\qquad \qquad A(-2, 1) +(3, 0)= C(1,1)\\\\\\3b)\quad 6\bigg(\dfrac{2}{3}\bigg)\quad =4\qquad \qquad A(-2, 1) +(4,0)= C(2,1)\\\\\\3c)\quad 6\bigg(\dfrac{3}{4}\bigg)\quad =\dfrac{9}{2}\qquad \qquad A(-2, 1) +(4.5,0)= C(2.5,1)[/tex]
[tex]3d)\quad 6\bigg(\dfrac{3}{5}\bigg)\quad =\dfrac{18}{5}\qquad \qquad A(-2, 1) +(3.6,0)= C(1.6,1)[/tex]
***********************************************************************************
The length of AB is 5 and is vertical (affects the y-coordinate)
[tex]4a)\quad 5\bigg(\dfrac{1}{2}\bigg)\quad =\dfrac{5}{2}\qquad \qquad A(2, 1) +(0,2.5)= C(2,3.5)\\\\\\4b)\quad 5\bigg(\dfrac{2}{5}\bigg)\quad =2\qquad \qquad A(2, 1) +(0,2)= C(2,3)\\\\\\4c)\quad 5\bigg(\dfrac{7}{8}\bigg)\quad =\dfrac{35}{8}\qquad \qquad A(2, 1) +(0,4.375)= C(2,5.375)[/tex]