[tex]\displaystyle\sum_{n=1}^\infty\frac{n+1}{n^9+n}[/tex]
B: Since
[tex]\dfrac{n+1}{n^9+n}=\dfrac{n+1}{n(n^8+1)}\approx\dfrac1{n^8}[/tex]
we can compare the given series to the convergent p-series,
[tex]\displaystyle\sum_{n=1}^\infty\frac1{n^7}[/tex]
We have
[tex]n^8<n^9[/tex]
[tex]\implies n^8+n^7<n^9+n[/tex]
(for large enough [tex]n[/tex], the degree-9 polynomial dominates the degree-8 polynomial)
[tex]\implies n^7(n+1)<n^9+n[/tex]
[tex]\implies\dfrac{n+1}{n^9+n}<\dfrac1{n^7}[/tex]