Estimate pressure drop for an estimate of pipe diameter Pressure drop is a function of flow rate, length, diameter, and roughness. Either iterative methods OR equation solvers are necessary to solve implicit problems. For a first guess of a 1 ft diameter pipe, what is the fluid velocity? V = 5.67 ft/s What is the Reynolds number? Re = 96014 What is the pipe relative roughness?

Respuesta :

Answer:

Explanation:

By using Bernoulli's Equation:

[tex]\frac{P_1}{P_g}+\frac{v_1^2}{2g}+z_1=\frac{P_2}{P_g}+\frac{v_2^2}{2g}+z_2+f\frac{L}{D}\frac{v^2}{2g}[/tex]

where;

[tex]z_1 = z_2 \ and \ v_1 = v_2[/tex]

[tex]P_1 - P_2 = f \frac{L}{D}\frac{1}{2}\rho v^2[/tex]

[tex]P_1-P_2 = \frac{5 \ lb}{in^2}( 144 \frac{in^2}{ft^2})[/tex]

[tex]P_1-P_2 = 720 \frac{lb}{ft^2}[/tex]

[tex]V = \frac{Q}{A} \\ \\ V = \frac{6.684 \ ft^2/s}{\frac{\pi}{4}D^2} \\ \\V = \frac{8.51}{D^2}[/tex]

Density of gasoline [tex]\rho = 1.32 \ slug/ft^3[/tex]

Dynamic Viscosity [tex]\mu[/tex] = [tex]6.5*10^{-6} \frac{lb.s}{ft}[/tex]

[tex]P_1-P_2 = f \frac{L \rho V^2}{2D}[/tex]

[tex]720 = f \frac{L(100)(1.32)}{2D}(\frac{8.51}{D^2})^2[/tex]

D = 1.46 f

[tex]Re, = \frac{\rho VD}{\mu} = \frac{1.32 *\frac{8.51}{D^2} D}{6.5*10^{-6}}[/tex]

[tex]= \frac{1.72*10^6}{D}[/tex]

[tex]\frac{E}{D}= \frac{0.00015}{D}[/tex]

However; the trail and error is as follows;

Assume ; f= 0.02 → D = 0.667ft[tex]\left \{ {{Re=2.576*10^6} \atop {\frac{E}{D}=0.000225}} \right.[/tex]   [tex]\right \{ {{f=0.014} \atop {\neq 2}}[/tex]

f = 0.0145  → D = 0.0428 ft [tex]\left \{ {{Re=4.018*10^6} \atop {\frac{E}{D}=0.00035}} \right.[/tex] [tex]\right \{ {{f=0.015} \atop {\neq 0.0145}}[/tex]

f = 0.0156  → D = 0.43 ft [tex]\left \{ {{Re=4.0*10^6} \atop {\frac{E}{D}=0.000348}} \right.[/tex] [tex]f = 0.0156[/tex]

∴ pipe diameter d = 0.43 ft

Given that:

D = 1 ft

[tex]V = \frac{Q}{A} \\ \\ V = \frac{6.684}{\frac{\pi}{4}(1)^2} \\ \\ V = 8.51 \ ft/s[/tex]

[tex]Re = \frac{\rho \ V \ D}{\mu } \\ \\ Re = \frac{1.32 *8.51 *1 }{6.5*10^{-6}}[/tex]

[tex]Re = 1.72 *10^6[/tex]

[tex]\frac{E}{D} = \frac{0.00015}{1} \\ \\ = 0.00015[/tex]

[tex]f = 0.0136[/tex]

[tex]P_2-P_1 = \frac{fL \rho V^2 }{2D}[/tex]

[tex]P_2-P_1 = \frac{0.036(100)(1.32)(8.51)^2 }{2*1}[/tex]

[tex]P_2-P_1 = 65 \frac {lb}{ft^2}[/tex]  to psi ; we have:

[tex]P_2-P_1 = 0.45 \ psi[/tex]

RELAXING NOICE
Relax