Respuesta :
Answer:
Explanation:
By using Bernoulli's Equation:
[tex]\frac{P_1}{P_g}+\frac{v_1^2}{2g}+z_1=\frac{P_2}{P_g}+\frac{v_2^2}{2g}+z_2+f\frac{L}{D}\frac{v^2}{2g}[/tex]
where;
[tex]z_1 = z_2 \ and \ v_1 = v_2[/tex]
[tex]P_1 - P_2 = f \frac{L}{D}\frac{1}{2}\rho v^2[/tex]
[tex]P_1-P_2 = \frac{5 \ lb}{in^2}( 144 \frac{in^2}{ft^2})[/tex]
[tex]P_1-P_2 = 720 \frac{lb}{ft^2}[/tex]
[tex]V = \frac{Q}{A} \\ \\ V = \frac{6.684 \ ft^2/s}{\frac{\pi}{4}D^2} \\ \\V = \frac{8.51}{D^2}[/tex]
Density of gasoline [tex]\rho = 1.32 \ slug/ft^3[/tex]
Dynamic Viscosity [tex]\mu[/tex] = [tex]6.5*10^{-6} \frac{lb.s}{ft}[/tex]
[tex]P_1-P_2 = f \frac{L \rho V^2}{2D}[/tex]
[tex]720 = f \frac{L(100)(1.32)}{2D}(\frac{8.51}{D^2})^2[/tex]
D = 1.46 f
[tex]Re, = \frac{\rho VD}{\mu} = \frac{1.32 *\frac{8.51}{D^2} D}{6.5*10^{-6}}[/tex]
[tex]= \frac{1.72*10^6}{D}[/tex]
[tex]\frac{E}{D}= \frac{0.00015}{D}[/tex]
However; the trail and error is as follows;
Assume ; f= 0.02 → D = 0.667ft[tex]\left \{ {{Re=2.576*10^6} \atop {\frac{E}{D}=0.000225}} \right.[/tex] [tex]\right \{ {{f=0.014} \atop {\neq 2}}[/tex]
f = 0.0145 → D = 0.0428 ft [tex]\left \{ {{Re=4.018*10^6} \atop {\frac{E}{D}=0.00035}} \right.[/tex] [tex]\right \{ {{f=0.015} \atop {\neq 0.0145}}[/tex]
f = 0.0156 → D = 0.43 ft [tex]\left \{ {{Re=4.0*10^6} \atop {\frac{E}{D}=0.000348}} \right.[/tex] [tex]f = 0.0156[/tex]
∴ pipe diameter d = 0.43 ft
Given that:
D = 1 ft
[tex]V = \frac{Q}{A} \\ \\ V = \frac{6.684}{\frac{\pi}{4}(1)^2} \\ \\ V = 8.51 \ ft/s[/tex]
[tex]Re = \frac{\rho \ V \ D}{\mu } \\ \\ Re = \frac{1.32 *8.51 *1 }{6.5*10^{-6}}[/tex]
[tex]Re = 1.72 *10^6[/tex]
[tex]\frac{E}{D} = \frac{0.00015}{1} \\ \\ = 0.00015[/tex]
[tex]f = 0.0136[/tex]
[tex]P_2-P_1 = \frac{fL \rho V^2 }{2D}[/tex]
[tex]P_2-P_1 = \frac{0.036(100)(1.32)(8.51)^2 }{2*1}[/tex]
[tex]P_2-P_1 = 65 \frac {lb}{ft^2}[/tex] to psi ; we have:
[tex]P_2-P_1 = 0.45 \ psi[/tex]
Otras preguntas
