Respuesta :
n² + 2n – 24=0
n² + 6n-4n – 24=0
n(n + 6) – 4(n+6)=0
(n+6)(n-4)=0
Hence,
n=4
or
n=-6
n² + 6n-4n – 24=0
n(n + 6) – 4(n+6)=0
(n+6)(n-4)=0
Hence,
n=4
or
n=-6
Answer:
Option (d) is correct.
The solution of given quadratic equation [tex]n^2+2n-24=0[/tex] is 4 and -6.
Step-by-step explanation:
Given equation [tex]n^2+2n-24=0[/tex]
We have to solve using factorization.
Consider the given quadratic equation [tex]n^2+2n-24=0[/tex]
We can solve the quadratic equation using middle term splitting method,
Split the middle term in such a away that the product of term gives the product of coefficient of two other terms.
Thus, 2n can be written as 6n-4n,
We have [tex]n^2+2n-24=0[/tex]
[tex]\Rightarrow n^2+6n-4n-24=0[/tex]
Taking n common from first two term and -4 common from last two terms, we have,
[tex]\Rightarrow n(n+6)-4(n+6)=0[/tex]
taking (n + 6) common, we have,
[tex]\Rightarrow (n-4)(n+6)=0[/tex]
Using , zero product property ,
[tex]a\cdot b=0 \Rightarrow a=0 \ or\ b=0[/tex] we have,
[tex]\Rightarrow (n+6)=0[/tex] or [tex]\Rightarrow (n-4)=0[/tex]
On simplify, we have,
[tex]\Rightarrow n=-6[/tex] or [tex]\Rightarrow n=4[/tex]
Thus, the solution of given quadratic equation [tex]n^2+2n-24=0[/tex] is 4 and -6.
Option (d) is correct.
