Use the trigonometric subtraction formula for sine to verify this identity:
cos((π / 2) – x) = sin x

Step-by-step explanation:
The simplest way to prove
cos(π/2 - x) = sin x
is to put A = π/2 , B = x in the trigonometric formula
cos(A-B) = cos A . cos B + sin A . sin B……………………………….(1)
and obtain
cos(π/2 - x) = cos π/2 . cos x + sin π/2 . sin x……………………….(2)
Substituting cos π/2 = 0 and sin π/2 = 1 in (2),
cos (π/2 - x) = 0 . cos x + 1 . sin x=0+sin x
∴cos (π/2 - x) = sin x (Proved)
Answer:
cos(pi/2 - x)
= cos(pi/2)cos(x) + sin(pi/2)sin(x)
= (0)cos(x) + (1)sin(x)
= sin(x)
Verification
cos(pi/2 - pi/2) = sin(pi/2)
cos(0) = sin(pi/2)
1 = 1