A prticular type of tennis racket comes in a midsize versionand an oversize version. sixty percent of all customers at acertain store want the oversize version.
a. among ten randomly sleected customers whowant this type of racket, what is the
probability that at least six want theoversize version?
b. Among ten randomly selected customers,what is the probability that the number who want the oversizeversion is within i standard deviation of the mean value?
c. The store currently has seven rackets ofeah version. What is the probability that all of the next tencustomers who want this racket can get the version they want fromcurrent stock?

Respuesta :

Answer:

a) P(x≥6)=0.633

b) P(4≤x≤8)=0.8989 (one standard deviation from the mean).

c) P(x≤7)=0.8328

Step-by-step explanation:

a) We can model this a binomial experiment. The probability of success p is the proportion of customers that prefer the oversize version (p=0.60).

The number of trials is n=10, as they select 10 randomly customers.

We have to calculate the probability that at least 6 out of 10 prefer the oversize version.

This can be calculated using the binomial expression:

[tex]P(x\geq6)=\sum_{k=6}^{10}P(k)=P(6)+P(7)+P(8)+P(9)+P(10)\\\\\\P(x=6) = \binom{10}{6} p^{6}q^{4}=210*0.0467*0.0256=0.2508\\\\P(x=7) = \binom{10}{7} p^{7}q^{3}=120*0.028*0.064=0.215\\\\P(x=8) = \binom{10}{8} p^{8}q^{2}=45*0.0168*0.16=0.1209\\\\P(x=9) = \binom{10}{9} p^{9}q^{1}=10*0.0101*0.4=0.0403\\\\P(x=10) = \binom{10}{10} p^{10}q^{0}=1*0.006*1=0.006\\\\\\P(x\geq6)=0.2508+0.215+0.1209+0.0403+0.006=0.633[/tex]

b) We first have to calculate the standard deviation from the mean of the binomial distribution. This is expressed as:

[tex]\sigma=\sqrt{np(1-p)}=\sqrt{10*0.6*0.4}=\sqrt{2.4}=1.55[/tex]

The mean of this distribution is:

[tex]\mu=np=10*0.6=6[/tex]

As this is a discrete distribution, we have to use integer values for the random variable. We will approximate both values for the bound of the interval.

[tex]LL=\mu-\sigma=6-1.55=4.45\approx4\\\\UL=\mu+\sigma=6+1.55=7.55\approx8[/tex]

The probability of having between 4 and 8 customers choosing the oversize version is:

[tex]P(4\leq x\leq 8)=\sum_{k=4}^8P(k)=P(4)+P(5)+P(6)+P(7)+P(8)\\\\\\P(x=4) = \binom{10}{4} p^{4}q^{6}=210*0.1296*0.0041=0.1115\\\\P(x=5) = \binom{10}{5} p^{5}q^{5}=252*0.0778*0.0102=0.2007\\\\P(x=6) = \binom{10}{6} p^{6}q^{4}=210*0.0467*0.0256=0.2508\\\\P(x=7) = \binom{10}{7} p^{7}q^{3}=120*0.028*0.064=0.215\\\\P(x=8) = \binom{10}{8} p^{8}q^{2}=45*0.0168*0.16=0.1209\\\\\\P(4\leq x\leq 8)=0.1115+0.2007+0.2508+0.215+0.1209=0.8989[/tex]

c. The probability that all of the next ten customers who want this racket can get the version they want from current stock means that at most 7 customers pick the oversize version.

Then, we have to calculate P(x≤7). We will, for simplicity, calculate this probability substracting P(x>7) from 1.

[tex]P(x\leq7)=1-\sum_{k=8}^{10}P(k)=1-(P(8)+P(9)+P(10))\\\\\\P(x=8) = \binom{10}{8} p^{8}q^{2}=45*0.0168*0.16=0.1209\\\\P(x=9) = \binom{10}{9} p^{9}q^{1}=10*0.0101*0.4=0.0403\\\\P(x=10) = \binom{10}{10} p^{10}q^{0}=1*0.006*1=0.006\\\\\\P(x\leq 7)=1-(0.1209+0.0403+0.006)=1-0.1672=0.8328[/tex]

ACCESS MORE