Find the angle between the given vectors to the nearest degree.
a.
110.7
c.
108.4
b.
71.6
d.
112.5

Given:
Given that the two vectors are u = (7,-4) and v = (1,5)
We need to determine the angle between these two vectors.
Dot product of u and v:
The dot product of u and v is given by
[tex]u \cdot v=(7 \times 1)+(-4 \times 5)[/tex]
[tex]=7-20[/tex]
[tex]u \cdot v=-13[/tex]
Magnitude of u:
The magnitude of u is given by
[tex]\| u \|=\sqrt{(7)^2+(-4)^2}[/tex]
[tex]\| u \|=\sqrt{49+16}[/tex]
[tex]\| u \|=\sqrt{65}[/tex]
Magnitude of v:
The magnitude of v is given by
[tex]\| v \|=\sqrt{(1)^2+(5)^2}[/tex]
[tex]\| v \|=\sqrt{1+25}[/tex]
[tex]\| v \|=\sqrt{26}[/tex]
Angle between the two vectors:
The angle between the two vectors can be determined using the formula,
[tex]cos \ \theta=\frac{u \cdot v}{\| u \| \| v \|}[/tex]
Substituting the values, we get;
[tex]cos \ \theta=\frac{-13}{\sqrt{65} \sqrt{26} }[/tex]
[tex]cos \ \theta=\frac{-13}{41.11 }[/tex]
[tex]cos \ \theta=-0.316[/tex]
[tex]\theta=cos ^{-1}(-0.316)[/tex]
[tex]\theta=108.4^{\circ}[/tex]
Thus, the angle between the two vectors is 108.4°