Respuesta :
Answer:
a) The volume of S is 34.13
b) The volume of S is 14.8
c) The volume of S is 5.17
d) The volume of S is 11.33
Step-by-step explanation:
a) The cross section area is equal to:
[tex]A=a^{2} =((5x-x^{2})-x)^{2} =(4x-x^{2} )^{2}[/tex]
The volume of S is equal to:
[tex]Vol_{S} =\int\limits^4_0 {A(x)} \, dx =\int\limits^4_0 {(4x-x^{2})^{2} } \, dx =34.13[/tex]
b) The cross section area is equal to:
[tex]A=\frac{a^{2}\sqrt{3} }{4} =\frac{\sqrt{3} }{4} ((5x-x^{2} )-x)^{2} =\frac{\sqrt{3} }{4} (4x-x^{2} )^{2}[/tex]
The volume of S is equal to:
[tex]Vol_{S} =\int\limits^4_0 {A(x)} \, dx =\frac{\sqrt{3} }{4} \int\limits^4_0 {(4x-x^{2})^{2} } \, dx =14.8[/tex]
c)
[tex]y=5x-x^{2} \\\frac{dy}{dx} =0\\5x-x^{2} =0\\x=5/2\\y(5/2)=25/4\\y=5x-x^{2} \\x^{2} -5x+y=0\\x=\frac{5+-\sqrt{25-4y} }{2}[/tex]
The cross section area is equal to:
[tex]A_{1} =\frac{1}{2} \pi r_{1}^{2} =\frac{1}{2} \pi (\frac{1}{2} (\frac{5+\sqrt{25-4y} }{2} -\frac{5-\sqrt{25-4y} }{2} ))^{2} =\frac{1}{8} \pi (25-4y)\\A_{2} =\frac{1}{2} \pi r_{2}^{2}=\frac{1}{2}\pi (\frac{1}{2} (y-\frac{5-\sqrt{25-4y} }{2} ))^{2} =\frac{1}{32} \pi (2y-5+\sqrt{25-4y} )^{2}[/tex]
The volume of S is equal to:
[tex]Vol_{S} =\int\limits^a_b {A_{1}(y) } \, dy+\int\limits^4_0 {A_{2}(y) } \, dy ,where-a=25/4,b=4\\Vol_{S} =\int\limits^a_b {\frac{1}{8}\pi (25-4y)} \, dy +\int\limits^a_b {\frac{1}{32}\pi (2y-5+\sqrt{25-4y} )^{2} } \, dy =5.17[/tex]
d) The cross section area is:
[tex]A_{1} =\frac{1}{2}ab=\frac{1}{2} a^{2} =\frac{1}{2} (\frac{5+\sqrt{25-4y} }{2}-\frac{5-\sqrt{25-4y}}{2} )^{2} =\frac{1}{2} (25-4y)\\A_{1}=\frac{1}{2}ab=\frac{1}{2} a^{2} =\frac{1}{2}(y-\frac{5-\sqrt{25-4y}}{2}} )^{2} =\frac{1}{8} (2y-5+\sqrt{25-4y}})^{2}[/tex]
The volume of S is equal to:
[tex]Vol_{S} =\int\limits^a_b {A_{1}(y) } \, dy +\int\limits^4_0 {A_{2}(y) } \, dy ,where-a=25/4,b=4\\Vol_{S}=\int\limits^a_b {\frac{1}{2}(25-4y) } \, dy +\int\limits^4_0 {\frac{1}{8}(2y-5+\sqrt{25-4y})^{2} } \, dy =11.33[/tex]