Respuesta :
Answer:
i) The torque required to raise the load is 15.85 N*m
ii) The torque required to lower the load is 6.91 N*m
iii) The minimum coefficient of friction is -0.016
Explanation:
Given:
dm = mean diameter = 0.03 m
p = pitch = 0.004 m
n = number of starts = 1
The lead is:
L = n * p = 1 * 0.004 = 0.004 m
F = load = 7000 N
dc = collar diameter = 0.035 m
u = 0.05
i) The helix angle is:
[tex]tan\alpha =\frac{L}{\pi *d_{m} } =\frac{0.004}{\pi *0.03} \\\alpha =2.43[/tex]
The torque is:
[tex]T=F\frac{d_{m} }{2} (\frac{\pi *u*d_{m}+L }{\pi *d_{m}-uL } )+(u_{c} F+\frac{d_{2} }{2} )=7000*\frac{0.03}{2} (\frac{\pi *0.05*0.03+0.004}{\pi *0.03-0.05*0.004} )+(0.05*7000*\frac{0.035}{2} )=15.85Nm[/tex]
ii) The torque to lowering the load is:
[tex]T=7000*\frac{0.03}{2} (\frac{\pi *0.05*0.03-0.004}{\pi *0.03+0.05*0.004} )+(0.05*7000*\frac{0.035}{2} )=6.91Nm[/tex]
iii)
[tex]T=F\frac{d_{m} }{2} (\frac{u*\pi *d_{m}-L}{\pi *d_{m}+uL} )+u_{c} *F*\frac{d_{c}}{2}\\ 0=F\frac{d_{m} }{2} (\frac{u*\pi *d_{m}-L}{\pi *d_{m}+uL} )+u_{c} *F*\frac{d_{c}}{2}\\F\frac{d_{m} }{2} (\frac{u*\pi *d_{m}-L}{\pi *d_{m}+uL} )=-u_{c} *F*\frac{d_{c}}{2}\\\frac{d_{m} }{2} (\frac{u*\pi *d_{m}-L}{\pi *d_{m}+uL} )=-u_{c} *\frac{d_{c}}{2}\\\\\frac{0.03}{2} (\frac{u*\pi *0.03-0.004}{\pi *0.03+u*0.004} )=-0.05*\frac{0.035}{2}[/tex]
Clearing u:
u = -0.016