Answer:
First Expected Dividend will come in at the end of Year 3 or t=3 assuming current time is t=0.
D3 = $ 4.25, Growth Rate for year 4 and year 5 = 22.1 %
Therefore, D4 = D3 x 1.221 = 4.25 x 1.221 = $ 5.18925 and D5 = D4 x 1.221 = 5.18925 x 1.221 = $ 6.33607
Growth Rate post Year 5 = 4.08 %
D6 = D5 x 1.0408 = 6.33607 x 1.0408 = $ 6.59459
Required Return = 13.6 %
Therefore, Current Stock Price = Present Value of Expected Dividends = [6.59459 / (0.136-0.0408)] x [1/(1.136)^(5)] + 4.25 / (1.136)^(3) + 5.18925 / (1.136)^(4) + 6.33607 / (1.136)^(5) = $ 45.979 ~ $ 45.98
Price at the end of Year 2 = P2 = Present Value of Expected Dividends at the end of year 2 = [6.59459 / (0.136-0.0408)] x [1/(1.136)^(3)] + 4.25 / (1.136) + 5.18925 / (1.136)^(2) + 6.33607 / (1.136)^(3) = $ 59.3358 ~ $ 59.34
Dividend Yield at the end of year 3 = DY3 = D3 / P2 = 4.25 / 59.34 = 0.07612 or 7.612 %
Total Required Return = 14. 6 %
Therefore, Required Capital Gains Yield = 14.6 % - 7.612 % = 6.988 %