Answer:
[tex][SOCl_2]=0.0218M[/tex]
Explanation:
The equations for a first order reaction are:
[tex]\dfrac{d[A]}{dt}=-k[A][/tex]
[tex][A]=[A_0]e^{-kt}[/tex]
[tex]t\frac{1}{2}=\dfrac{\ln 2}{k}[/tex]
1. Calculate the constant of reaction, k:
Use the equation
[tex]t\frac{1}{2}=\dfrac{\ln 2}{k}[/tex]
[tex]8.75h=\dfrac{\ln 2}{k}[/tex]
[tex]k=\dfrac{\ln 2}{8.75h}[/tex]
[tex]k\approx 0.0792168h^{-1}[/tex]
2. Calculate the concentration after 17.0 hours
Use the equation
[tex][A]=[A_0]e^{-kt}[/tex]
[tex][SOCl_2]=0.0837M\cdot e^{-0.0792168h^{-1}\times 17.0h}[/tex]
[tex][SOCl_2]=0.0218M[/tex]