Sand is piled in the shape of a cone. If a pile of sand has a diameter of 20 feet and a volume of 610pi feet cubed, then what is the height of the pile?

Respuesta :

Answer:

The height is 18.3 feet

Step-by-step explanation:

Volume of a cone v = [tex]\pi r^{2} \frac{h}{3}[/tex]

If the diameter is 20, and diameter is 2r, that is 2 radius

∴ r = 20/2 = 10 ft

V = 610[tex]\pi[/tex]=[tex]\pi[/tex][tex]10^{2}[/tex][tex]\frac{h}{3}[/tex]

610[tex]\pi[/tex]×3=10²[tex]\pi[/tex]h

1830[tex]\pi[/tex] = 100[tex]\pi[/tex]h

Divide both sides by 100[tex]\pi[/tex]

1830[tex]\pi[/tex]/100[tex]\pi[/tex] = 100[tex]\pi[/tex]h/100[tex]\pi[/tex]

h = 1830[tex]\pi[/tex]/100[tex]\pi[/tex]

h = 18.3 ft