Respuesta :
Answer:
If the circumference is 50.24, the radius must be [tex]r = \frac{50.24}{2\pi r} [/tex]
, because the circumference is always equal to [tex]2\pi r[/tex]
So, [tex]r= \frac{50.24}{2\pi r} =8.0cm[/tex]
Since the area is,
[tex]a = {\pi r}^{2} [/tex]
we obtain,
[tex]a = \pi( {8}^{2})[/tex]
[tex] = 201 \: {cm}^{2} [/tex]
[tex]\bf \huge \red{F} \bf \pink{O}\bf \purple{L}\bf \blue{L}\bf \green{O}\bf \red{W} \: \bf \pink{x} \bf \purple{I} \bf \blue{t} \bf \green{z} \bf \red{M} \bf \pink{u} \bf \purple{s} \bf \blue{k} \bf \green{x}[/tex]