Answer:
Area of the rectangle = [tex]1815\,feet^2[/tex]
Step-by-step explanation:
Perimeter of the rectangle= [tex]176\,feet[/tex]
Ratio of the width to length is :
[tex]\dfrac{W}{L} =\dfrac{3}{5}\\[/tex]
Therefore ,
[tex]L=\dfrac{5W}{3}[/tex]
Perimeter of a rectangle= [tex]2(Length+Width)[/tex]
[tex]176=2(\dfrac{5W}{3}+W )\\\\\dfrac{176}{2} = \dfrac{5W}{3}+W \\\\88=\dfrac{5W+3W}{3} \\\\ 88=\dfrac{8W}{3}\\\\ \dfrac{W}{3}=\dfrac{88}{8}\\\\ \dfrac{W}{3}=11\\\\ W=11\times3\\\\W=33\,feet[/tex]
As.
[tex]L=\dfrac{5W}{3}[/tex]
[tex]L=\dfrac{5\times33}{3} \\\\L=55\,feet[/tex]
Area of a rectangle= [tex]Length\times Width[/tex]
[tex]=55\times33\\\\=1815\,feet^2[/tex]
Area of the rectangle = [tex]1815\,feet^2[/tex]